


UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA CHAMPAIGN
BOOKSTACKS



CENTRAL CIRCULATION BOOKSTACKS
The person charging this material is re-

sponsible for its renewal or its return to

the library from which it was borrowed
on or before the Latest Date stamped
below. You may be charged a minimum
fee of $75.00 for each lost book.

Theft, mutilation, and underlining of books are reasons

for disciplinary action and may result in dismissal from

the University.

TO RENEW CALL TELEPHONE CENTER, 339-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

APR 6 1998

When renewing by phone, write new due date below

previous due date. L162





if20-)U
Faculty Working Paper 91-0100

^-rx

330
B38^ C0PV 2

the

University

of uriwna-Cfcampafg*

Universal Coalition-Proof Equilibrium

Bhaskar Chakravorti
Department of Economics

Charles M. Kahn
Department of Economics

Bureau of Economic and Business Research

College of Commerce and Business Administration

'

University of Illinois at Urbana-Champaign





BEBR

FACULTY WORKING PAPER NO. 91-0100

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

January 1991

Universal Coalition-Proof Equilibrium

Bhaskar Chakravorti

and

Charles M. Kahn

Department of Economics

We are grateful to George Mailath and Jacques Robert for helpful discussions on the subject. The

authors retain responsibility for all errors.



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/universalcoaliti100chak



UNIVERSAL COALITION-PROOF EQUILIBRIUM

ABSTRACT

We wish to characterize stable agreements in games in which coalitions

can make non-binding self-enforcing deviations from such agreements. We
allow for "universal" coalition formation, i.e. the validity of a deviation

is checked not only against further deviations by subsets of the deviating

coalition but also against deviations agreed upon by some members of the

deviating coalition convincing players from the complementary coalition to

deviate. The blocking device introduced here is a "threat" which is weaker
than that of "trumping", associated with Bernheim, Peleg and Whinston's

(1987) concept of Coalition-proof Equilibrium (CPE) and is stronger than an

"objection", associated with an equilibrium concept (CCTE) based upon

Greenberg's (19S9) Coalitional Contingent Threats. We show that our

solution concept has no logical relationship with either CPE or CCTE;
however, the solution is a Nash Equilibrium refinement. We argue that the

last result is quite unexpected since, a priori, a unilateral best-response

property is not a necessary condition for stability (in a von

Neumann-Morgenstern (1947) sense) in the presence of universal coalition

formation. The key to resolving the information asymmetry inherent in our

solution concept and its Nash refinement property is a "lateral induction"

condition which is related to the idea of forwards induction in sequential

games.
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"Those who meet will meet again." Zulu proverb.

1. INTRODUCTION

Consider a finite n-player game in which coalitions of players

communicate prior to actual play and make non-binding agreements on

strategy choices. We wish to know which agreements are stable in such

environments.

Following upon Aumann's (1959) "strong" Nash equilibrium, one answer

to this question is given by Bernheim, et ai.'s (1987) notion of

Coalition-proof Nash equilibrium (CPE), a refinement of Nash equilibrium.

This provides the starting point of our paper. To borrow Kalai's remark

quoted in Greenberg (1989): "The concept of CPE does not go far enough in

its analysis of stability. When considering a deviating coalition, the

validity of the deviation is checked only against further deviations of

subcoalitions of the deviating coalition. {We refer to this as the

"nestedness" assumption.) However, members of the deviating coalitions

could also deviate by convincing other players (from the nondeviating

coalition) to deviate provided they improve their payoff (we refer to this

as universal coalition formation)." The primary motivation of this paper

is precisely to address Kalai's concerns and to characterize stable

agreements in the presence of universal coalition formation. We show that

the characterization is dramatically different from that of CPE.

This paper presents a new solution concept called Universal

Coalition-proof equilibrium (UCPE). We propose the concept of UCPE as the

natural non-cooperative counterpart of the consistent Bargaining Set

(Dutta, et al. (1989)), a refinement of the Bargaining set (Aumann and



Maschler (1964), Mas-Colell (1989), Shapley and Shubik (1984)) in

cooperative game theory. The UCPE contains the set of strong Nash

equilibria but has no logical containment relationship with CPE. Moreover,

there is no logical relationship with an equilibrium concept based on

Greenberg's (1989, 1989a) notion of Coalitional Contingent Threats that

also does not rely on the nestedness assumption. This latter notion,

referred to as Coalitional Contingent Threats Equilibrium (CCTE), however,

assumes that all deviating agreements are publicly observable. We show

that UCPE is, generically, a refinement of Nash equilibrium. Unlike the

case with CPE, this crucial containment property does not trivially follow

from the definitions.

The blocking device proposed here is a "threat" which is a weakening

of the notion of "trumping" used by Kahn and Mookherjee (1989) to define

CPE and a strengthening of the notion of an "objection", used to define a

CCTE. The key to arriving at our equilibrium is a "lateral induction"

condition. Its intuition is derived from the idea of forwards induction,

which plays a critical role in sequential games (see Kohlberg and Mertens

(1986), Cho and Kreps (1987), Banks and Sobel (1987), etc.). It serves two

critical roles. First, it bridges an informational asymmetry problem that

arises in the absence of the nestedness assumption. This role is not

entirely unexpected, given the links with forward induction. Second, it

ensures that, generically, every UCPE is also a Nash equilibrium. This

property is somewhat of a surprise since, a priori, the Nash best-response

property is not a necessary condition for immunity from blocking when

universal coalition formation is possible.

We shall briefly discuss some of the issues raised above that are

peculiar to our problem before proceeding to the formal model.



(i) Information asymmetry: Universal coalition formation has been analyzed

by Greenberg (1989, 1989a) in terms of "coalitional contingent threats" and

"coalitional commitment". However, he assumes that all deviating

agreements are made openly and are, therefore, public information. This

assumption is, in general, not usual in the analysis of non-cooperative

strategic-form games where only "equilibrium" strategies are assumed to be

common knowledge. We permit deviating agreements to be made privately.

Hence, if a new coalition forms which includes some players defecting from

another coalition, the defectors have information which is unobservable to

the other players joining the new coalition about the agreement they are

defecting from. This is the root of the information asymmetry in our

model. The absence of a resolution to the information problem had led to

the nestedness assumption in Bernheim, et al. (1987).

(ii) Stable partitions of the agreements space: In the absence of a

nestedness assumption, a definition of a stable agreement based on

recursion on the number of players a la Bernheim, et al. (19S7) cannot be

given. We show that a characterization in terms of a partition of the

space of agreements in the sense of von Neumann and Morgenstern (1947)

abstract stable sets (which is the alternative proposed by Greenberg

(19S9)) also fails because of the existence of cycles in the ordering of

agreements. Moreover, a characterization in terms of a weaker notion of

semi-stability (as in Kahn and Mookherjee (1989)) is not possible, since a

unique semi-stable partition of the space of agreements is not guaranteed.

Given that we consider finite games, these difficulties are in sharp

contrast with the proposition that a unique stable (and semi-stable)

partition exists in environments satisfying the nestedness assumption (see

Greenberg (1989) and Kahn and Mookherjee (1989)) and with the corresponding



existence of a unique "labelling" system in characteristic function form

games (Dutta et at (1989).

We derive a characterization of stable agreements using a notion of

minimal semi-stability (Kahn and Mookherjee (1989)). The UCPE corresponds

to n-player agreements that are threatened only by "strictly bad"

agreements. A weaker notion would correspond to agreements that are not

threatened by any "strictly good" agreements. We show that the latter,

however, fails the Nash equilibrium test.

(iii) Relationship with other equilibrium concepts: The relationships among

the blocking devices ("threat"-, "trump", "objection") does not translate

into a relationship among the corresponding equilibrium concepts (UCPE,

CPE, CCTE). To check for stability of an agreement, we need to examine the

entire hierarchy of blocking agreements in which the stability of each

agreement depends on the stability of . the agreement that blocks it. A

weaker (or stronger) blocking device could make it both easier and more

difficult to block a given a-player agreement, depending on the length of

the hierarchy.

A priori, we should not expect our solution to be a refinement of Nash

equilibrium, though this may appear paradoxical at first glance. In games

with universal coalition formation, the Nash best-response property is not

necessary for stability of an agreement in the von Neumann-Morgenstern

sense. A Nash equilibrium corresponds to an n-player agreement that is not

threatened by any one-player deviation. However, it is possible for an

n-player agreement to be non-credibly threatened by a one-player deviation.

The deviator may subsequently wish to form a coalition with other players

and deviate from the initial deviation in a self-enforcing manner. Thus,

the n-player agreement (which is non-Nash) is stable (in the von



Neumann-Morgenstern sense). This is a consequence of the fact that

blocking coalitions are non-nested and no player can commit to an

agreement.

In conjunction with the fact that we have (a) universal coalition

formation and (b) public unobservability of deviating agreements, the Nash

refinement property of our solution makes it more attractive than CPE and

CCTE in characterizing stable agreements in non-cooperative games with

pre-play non-binding communication within coalitions. If eventually the

objective of this branch of game theory is to provide a framework that

unifies cooperative and non-cooperative analysis, it is comforting to know

that agreements that are stable (in a cooperative sense) under pre-play

private communication within unrestricted coalitions do indeed satisfy the

fundamental non-cooperative requirement of Nash equilibrium.

2. THE MODEL

N = {1,..., n} is a set of players. H is the set of non-empty subsets

of N. For every H e K, - H is the complement of H in N. Given x = [x )

i i€N

e X, for every H <= K, let x = (x ) and for all i € N, x =
H i iGH -i

[x ) . M is a (finite) set of joint moves by the members of N, with

M being the set of moves for I. Every i <= N has a utility function u : M
i i

-> R. A game T is the triple <N, M, (u) >.
i€N

An agreement is a pair [m, H] e M x K, with d denoting the set of all

agreements.

An agreement is interpreted as a specification of (a) the moves to be taken



by all parties to the agreement, given the moves of all other players, and

(b) the set of players forming the agreement.

For any H, I, J e K and m' , m" e M, define X[m' , m"; J] = im e M: Vi €HI
J, u (m', m ) > u (m", m )}.

i H -H i I -I

The set X[m' , m"; J] contains all profiles of moves, m, such that
h I

r

everybody in coalition J prefers a deviation by coalition H from m to m' to

a deviation by coalition I from m to m".

Define a binary relation >- on d x ^ as follows: [m, H] >- [m'
(

J] if H

n J * and Vi <= H\J,

X[m , m'; H] = X[m , m'; H n J].Hi Hi

X[m , m'; H] S X[m , m'; H n Jj is immediate. The reverse containmentHi Hi
requires that, given an initial profile m, if everybody common to both

coalitions H and J prefers a deviation by coalition H to m to a deviation
H

by a player i in H but not in J to m', then everybody in H must display the
i

same preference. The crucial role played by this relation is made clear

after the next definition.

Define another binary relation » on A x A as follows: [m, H] »- [m'

,

J] if

(i) for all i e H, u (m) > u Cm',),
i i

(ii) m = m' , and
-H -H

(iii) [m, H] v [m', J]

If [m, H] » [m', J], we say that [m, Hi threatens [m\ J]. Moreover,



[m, H] and [m* t
J] are referred to, respectively, as the source and the

target (of the threat). Members of the sets H r\ J and H\J are referred to,

respectively, as the defectors and the recruits.

[m, H] threatens [m\ J] if three conditions are satisfied. Both the

defectors and the recruits must be made better off than they were in the

target agreement (condition (i)). This provides the incentive for the

formation of the source agreement. The moves of all players not party to

the source agreement are held fixed at the values specified by the target

agreement (condition (ii)).

Condition (iii) is a lateral induction condition. If the defectors

know what the profile of moves in target agreement is, they must convince

the recruits that it is indeed m'. (Subsequently, we shall argue that

defectors will always be fully informed.) When the target agreement is a

candidate "equilibrium", of course, we presume that all the moves would be

common knowledge. However, all other agreements are out of equilibrium and

each recruit would know only what he/she is playing. The moves to be

played by the recruits and the defectors in the source agreement are

observable to everybody party to that agreement. The defectors make the

following implicit "speech" (see Cho and Kreps (1987) for other examples of

such "speeches") to each recruit i.

"We want to convince you that the target agreement contains the

profile m' . The only situation in which we would have an
-i

incentive to defect from, the target is when we stand to benefit

from the defection. If the target contains an N\{ i}-profile of

moves for which you would be made worse off by joining the source

agreement, then at least one defector would be made worse off as

well. If there is any N\{i}-profile of moves that makes us better



off from the defection, then you would be better off as well.

This coincidence of interests is captured by the equivalence of

the sets X[-; H] and X[<; H r\ J], m are the moves that you can
H

observe if the defection occurs, and m' Is the move that you can
i

observe In the absence of the defection. Hence, the fact that we

are proposing the formation of the source agreement must convey a

signal that we are truthfully revealing our Information about the

moves In the target agreement, since we have no Incentive to lie."

Begin with an a-player agreement that is common knowledge and identify

the agreements that threaten it. The defectors are fully informed at this

point. Next, identify the agreements that threaten the second agreement.

Again the defectors are fully informed. And so on. By inductively

applying the lateral induction argument above, we can ensure that defectors

will always be fully informed about the moves profile in any target

agreement in the hierarchy of agreements.

A stronger blocking device is used in the work of Bernheim, et al.

(1987), Greenberg (1989) and Kahn and Mookherjee (1989). This can be

expressed as a "trumping" relation (Kahn and Mookherjee (1989)):

Define a third binary relation >->-> on A x A as follows: [m, H] >»

[m\ J) if

(i) [m, H] >-> [m\ J)

(ii) H c j.

If [m, H\ »> [m\ J], then [m, H] trumps [m' , J}. The trumping

relation requires that the threat relation be met and a nestedness

assumption (i.e. condition (ii) above) be satisfied. Our definition

appears somewhat different from the one given in Kahn and Mookherjee
I

10



(1989). The basic difference is the lateral induction condition which is a

pre-requisite for a threat. However, note that the sets XI*; H] and X[*\ H

n J] are trivially equivalent in the case where H Q J. Hence, the

nestedness assumption ensures that this condition is automatically met.

3. THE GOOD, THE BAD AND THE UGLY

Our objective is to determine whether an agreement is stable, i.e. it

is never threatened or is threatened only by an agreement that is

threatened by an agreement that is never threatened or ...and so on. This

logic follows the von Neumann and Morgenstern stable sets approach adopted

by Greenberg (1989), Kahn and Mookherjee (1989) and Dutta et at (1989). To

identify "stable" agreements, we must answer the following question: does

there exist a unique "stable" (failing which a "semi-stable") partition of

A? These notions are defined as follows.

Consider three subsets of A: the good, the bad and the ugly.

The set of bad agreements, S(v^), is defined by B(>->-) = i[m' , H] € A:

3[m", J) e &(>->-) such that [m", J] » [m* , H}}.

The set of good agreements, §{»), is defined by !*(>->-) = f[m\ H\ € J:

if Km", J] € A such that [m", J] » [m\ H], then [m", J] e B{»)}.

The set of ugly agreements, 11{>->), is defined as the complement of

%{>->) u B{») in d.

A admits a {^>)-stable partition if &(»-) u B (>->-) = A and S{»-) r\

£(>->-) = 0.

A admits a [»)-semi-stable partition if §{>->-) n B(>->-) = 0.

11



Correspondingly, we may define §"(»>) and B{>») and 1L{»>-) as the

good, bad and ugly subsets of d by using trumping instead of a threat as a

blocking device. Define (>->->-)-stability and (>->->-)-semi-stability

analogously.

The Greenberg-Kahn-Mookherjee approach applies these notions to

generate a solution concept in the following manner. First, show that

there exists a unique (^>->-)-stable partition of d. Second, m is a solution

to the game if [m, N] is a good agreement.

PROPOSITION 0: (Greenberg (1989), Kahn and Mookherjee (1989)): d admits a

unique (»-•>-)-stable partition given that the underlying games are finite.

This provides an alternative to the recursive approach of Bernheim,

et al. (1987). Formally,

m is a (nested) Coalition-proof Nash Equilibrium (CPE) if [m, N] e

&(>»).

The original motivation for a non-recursive definition was to

facilitate extension of the fundamental idea of coalition-proofness to

non-finite games. For our problem, even with finite games, the recursive

approach cannot be used since we do not assume nestedness of deviating

coalitions. Thus, the (semi-) stability approach appears to be the

appropriate one for our purposes. However, the latter method would run

into difficulties if a (>->-)-(semi-)stable partition fails to exist or is

not unique. Ideally, we would like to have a unique (»-)-stable partition.

A (>->-)-semi-stable partition that is not (>->-)-stable contains an ugly set,

12



which makes the solution concept somewhat ambiguous. Once we replace

trumping with a threat as the blocking device, neither existence nor

uniqueness of a stable partition is guaranteed, even in finite games. This

is shown in the Appendix. Hence, we turn to an alternative partition of d,

called minimal semi-stability.

4. MINIMAL (»-)-SEMI-STABILITY

Consider the following construction from Kahn and Mookherjee (1989).

* *

Define the sets § and B as follows:
o o

*

£ = {[m, H] e d: 3 no [m\ J] e 4 such that [m\ J] »- [m, H}}.
o

B = {[m, H] e d: 3[m' , J] e 3 such that [m\ J] » [m, H}}.
o o

* *

Next, inductively define ^ , B with z = 1, 2,... as follows:
z z

^ = <[m, H] e d: if [m\ //'] y>- [m, H], then [m\ H'] € S* K
z z-1

B = ([m, H] € A 3[m\ //'] € £ such that [m', H'] >-> [m, H]>.
z z

* * * *

For all z, 5* £ §" and B £ B , by the definitions given above,
z-l z z-l z

J 6

* °° * * °° *

Define §" = U £ and £ =US. Observe that if [m, H] e <3* and there
z z

z=0 z =

exists [m\ //'] € atf such that [m\ H'] >->• [m, H], then there exists z such

that [m, H] e £ and \m' , H'] e E . Hence, [m\ W] € B . Conversely,
z z-l

if [m, H] € B , then there exists z such that [m, H] e S and [m\ ff ] € £
z z

such that [m\ //*] »- [m, //]. Hence, [m\ W] € £*. £*and B satisfy the

definition of good and bad sets respectively.

* *

In addition, we claim that § n B = 0.

* *

Suppose otherwise, i.e. [m, H] e § n B . By construction, for some

z, [m, H] € & n B . [m, f/] e B implies that there exists [m\ H'l e £

such that [m', H'] >->- [m, H]. Since [m, //] € £ as well, [m' f H*] € B .

z z-i

13



Hence, there exists [m", H"} e £ such that [m", H"] » [m' t H']. Since
z-l

[m' t H'} e $*, and [m", //"] >-> [m\ //'], [m", H"] € £*
. Repeating this

z z-l
* *

argument, we conclude that there exists [m, H] e '§ r\ B . This is in
o o

* *

contradiction with the definitions of ** and S .

o o

* # *

Finally, define U as the complement of ? u 23 in si Note that every

#

agreement in "§ is a good agreement for any (»)-semi-stable partition and,
o

*

therefore, every agreement in S is a bad agreement for any
o

*

(>->-)-semi-stable partition. By applying an induction argument for all §"

z

*

and £ , we have just shown the existence of a partition of d which
z

satisfies a property of "minimal" semi-stability, which is defined as

follows.

* * *

A minimal (»)-semi-stable partition. {§ (>->-), S (»-), XL {»)) of d is

* *

one that satisfies: *? (») Q '§{») and B (>->-) Q &{») for every

(»)-semi-stable partition {**(>->-), £(>->-), 1i(»-)} of d. We refer to the

elements of this partition as strictly good, strictly bad and strictly

ugly.

Having settled on a unique method of partitioning the space of

agreements, we now have a criterion for testing the stability of an

n-player agreement.

m is a Universal Coalition-proof Equilibrium (UCPE) if [m, N] e

*

$ (»).

A weaker notion could also be defined as follows:

m is a weak Universal Coalition-proof Equilibrium (W-UCPE) if [m, N] e

Our solution concept says that an n-player agreement is stable if it

14



is threatened only by strictly bad agreements. The weaker concept says

that an n-player agreement is stable if it is not threatened by any

strictly good agreements. In the following section we shall argue that the

latter is not a plausible notion of stability in a non-cooperative context.

5. EXAMPLES AND RELATIONSHIP WITH OTHER SOLUTION CONCEPTS

In this section, we shall explore the relationship of UCPE with other

solution concepts that have been proposed to apply to the same class of

problems. These include CPE, an equilibrium concept based on Coalitional

Contingent Threats (Greenberg (1989, 1989a)) and Nash equilibrium.

Clearly, the set of strong Nash equilibria (Aumann (1959)) are contained in

the UCPE set. Hence, UCPE exist when the former exists. A general proof

of existence of UCPE would face the same difficulties as those associated

with CPE and other coalitional concepts.

First, we shall give some additional definitions.

5.1 ADDITIONAL DEEINITIONS

We consider an equilibrium concept based on the notion of Coalitional

Contingent Threats, proposed by Greenberg (1989, 19S9a) to characterize

stable agreements when universal coalition formation is possible (i.e.

precisely the environment that we have set about to study) under the

assumption that all negotiations are made publicly.

Define a binary relation *> on 4 x d as follows: [m, H] » [m\ J] if

15



(i) Vi € H, u{m) > u.(m'), and

(ii) m = m' .

-H -H

If [m, H] -» [m', J], we say that [m, H] is an objection to [m', J].

Observe that an objection involves precisely the same requirements as a

threat except for the lateral induction criterion. The latter is not used

since negotiations are assumed to be made in public. The underlying

process is as follows (see Greenberg (1989, 1989a)). An n-player agreement

[m, N] is on the table. A coalition J may openly declare that it objects

to the agreement and will adopt m' instead provided the remaining players

play m . Another coalition, say H, can then object to the agreement [m' =

(m\ m ), J] by threatening to play m provided the remaining players play
J - J H

m' . This process continues until no coalition objects to a proposed

profile, taking into account the possible reaction of other coalitions.

Define the sets £ (»), S (-») and U (-») such that {$ (-»), S (-»), If (»)}

is a minimal (-»)-semi-stable partition of A. The construction of this

partition is analogous to that given for the relation >->-.

m is a Coalitional Contingent Threat Equilibrium (CCTE) if [m, /V] €

*

S
1

(»). m is a weak Coalitional Contingent Threat Equilibrium. (W-CCTE) if

[m, N] g §" (-») u If (-»).

Observe that a CCTE does not satisfy a fundamental property of Nash

equilibrium, which is defined as follows:

m is a Nash Equilibrium if 3 no [m' , {i}} e A such that [m\ {i}\ >->->

[m, A/].

A priori, only CPE satisfies the Nash criterion by definition, since

the condition given above follows from the condition that [m, N] e £(>->->-).

16



5.2 PROPOSITIONS

The points made by the examples below do not rely on any

non-genericity in the payoffs. The first proposition shows that even

though » is weaker than >->->-, this does not translate into a relationship

between the corresponding solution concepts.

PROPOSITION 1: Neither UCPE nor W-UCPE is logically related to CPE.

Proof: To show that there are no logical containment relationships between

either UCPE or W-UCPE and CPE, consider the following examples.

EXAMPLE 1:

[Insert Figure 1 here]

Consider the game given above. Player 1 chooses from {T , B}, 2

chooses from {L, R} and 3 chooses from {£, ah This example will show that

[(B, R, I), U, 2, 3>] € £(>->->) and [(B, R, £), {1, 2, 3}] € £(>->-).

A Nash equilibrium of the game is {B, R, I). It is not a CPE since

[(7, L, 1), {1, 2)] »y [(B, R, I), {1, 2, 3}]. Check that [(7, L, I), {1,

2}] € $(>»). We claim, however, that [(B, R, I), <1, 2, 3}] e §" (>->-).

The argument is in several steps.

(I) [(T, L, I), {1, 2}] >» KB, R, 1), {1, 2, 3}] implies that [(T, L, I),

(1, 2}] >-> [(B, R, I), U, 2, 3}].

(II) Next, we claim that [(B, L, a), U, 3}] >-> [(7, L, I), U, 2)].

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(B, a), £; {1, 3>] = UB, L, I), (B, L, n), (T, L, I),

(T, L, a)} = X[(B, a), £; {1}]. Therefore, [(B, L, a), {1, 3}] >- [(7, L,

17



I), U, 2}].

Since [(B, L, a), {1, 3}] is not threatened by any other agreement, it

is in §* (»-). Hence, [(T, L, I), U, 2}] € S (»-). Since [(7, L, I!), {1,

2}] is the unique agreement that threatens [(B, R, I), U, 2, 3}], the

*

latter is in ^ (>->-).

EXAMPLE 2:

[Insert Figure 2 here]

This game has player 3 choosing from {I, c, a). The remaining

players' strategy spaces are the same as in the previous game. This

example will show that [(T, L, c), {1, 2, 3}] e §"(>->->-) and [(T, L, c), {1,

2, 3}] e S (>->-).

Consider the Nash equilibrium (T, L, c). It is also a CPE. This may

be checked as follows. The only agreement that trumps [{T, L, c), {1, 2,

3}} is [(B, R, V, (1, 2, 3>]. However, [{T, L, I), {1, 2)] »> [(B, R,

I), <1, 2, 3}]. [(T, L, I), {1, 2}] € *§(>») since it is not trumped by

any agreements.

We claim that [(T, L, c), {1, 2, 3}] e £ (>->-). The argument is as

follows:

(I) [(T, L, I), {1, 2}] >-» KB, R, I), {1, 2, 3}] implies that [(T, L, £),

{1, 2}] » [(B, R, I), {1, 2, 3}].

(II) Next, we claim that [(B, L, a), <1, 3}] >->- [(T, L, £), {1, 2}J.

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(B, a), 1; {1, 3>] = {(B, L, I), (B, L, a), (T, L, I),

(T, L, ri), (B, L, c), (T, L, c)} = X[(B, a), £; {1}]. Therefore, [(B, L,

a), {1, 3}] > [(7, L, £), {1, 2}].
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Since [(B, L, a), U, 3>] is not threatened by any other agreement, it

is in ^ (>->-). Hence, [(7, L, I), {1, 2}] € S (»). Since [(7, L, £), {1,

2}] is the only agreement that threatens [(B, R, I), U, 2, 3}], the latter

is in £(>->). [(B, R, £), {1, 2, 3}] ^> [(7, L, c), {1, 2, 3}] implies

*

that [(7, L, c), {1, 2, 3>] € 2 (>->).

The second proposition shows that even though >-> is stronger than -»,

this does not translate into a relationship between the corresponding

solution concepts.

PROPOSITION 2: Neither UCPE nor W-UCPE is logically related to either CCTE

or W-CCTE.

Proof: Consider the following examples.

EXAMPLE 3:

[Insert Eigure 3 here]

Consider the game given above. Player 1 chooses from (T, B), player 2

chooses from {L, C, R} and player 3 chooses from {I, n.}. The example shows

that [(B, C, I), 0, 2, 3}] e W (») and [(B, C, I), {1, 2, 3}] € B (-»).

*

First, we show that [(B, C, £), U, 2, 3H € 5" (>->-). The argument is

in several steps:

(I) [(7, L, I), (1, 2)] >->->- [(B, C, £), {1, 2, 3}], which implies that [(7,

L, £), {1, 2}] >->- [(B, C, £), <1, 2, 3}].

(II) We claim that [(B, L, a), {1, 3}} y> [(7, L, 6), {1, 2)\. Conditions

(i) and (ii) for a threat are met. To check for condition (iii), verify

that X[(B, a), £; <l, 3}} = {IB, L, I), (B, L, a), (7, L, «;, (7, L, a)} =

X[(B, a), I; {I}}. Therefore, [(B, L, a), {1, 3}] >- [(7, L, I), {1, 2>].

Since [(B, L, a), {1, 3}] is not threatened by any other agreement, it
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* #

is in 9 (>->-). Hence, [(7, L, I), <1, 2}] € 2 (»-). Since [(7, L, £), {1,

2}] is the only agreement that threatens [(B, C, I), {1, 2, 3}], the latter

*

is in 9 {»-).

*

Next, we show that [(B, C, I), {1, 2, 3}] e S (-»). First, observe

that [(T, L, £), {1, 2}] >->- [(B, C, I), {1, 2, 3}] implies that [(T, L, £),

{1, 2}] » [(B, C, £), {1, 2, 3}]. Moreover, [(B, L, a), {1, 3}] ^> [(T, L,

£), {1, 2}] implies that [(B, L, a), {1, 3}] *> [(7, L, I), {1, 2}].

Finally, observe that [(B, B, a), {2}] * [(B, L, a), {1, 3}].

Since there is no agreement that constitutes an objection to [(B, B,

a), {2}], the latter is in 3 (-»). [(B, R, a), {2}] » [(B, L, a), {1, 3}]

implies that [(B, L, a), {1, 3}] € S (-»). Since [(B, L, a), (1, 3}] is the

only agreement that is an objection to [(7, L, £), {1, 2}], the latter is

in 9 (•»). [(T, L, £), {1, 2)1 » [(B, C, £), <1, 2, 3}] implies that [(B,

C, £), {1, 2, 3}] € £%).

Next, consider the following example.

EXAMPLE 4:

[Insert Figure 4 here]

In the game above, Player 1 chooses from {T, B} and player 2 chooses

*

from {L, R). This example shows that [(7, L), {1, 2}] € §" (-») and [(7, L),

<1, 2}] € B*(»).

[(7, B), <2>] » [(7, L), {1, 2)) and [(B, B), {1}] » [(7, B), {2}].

Also, [(B, L), {1}] » [(7, L), {1, 2>] and [(B, B), {2}] » [(B, L), {1)1.

Since there is no agreement that constitutes an objection to [(B, B), (1>],

the latter is in 9 (-»). Hence, [(B, B), {1}] » [(7, B), {2}] implies that

*

[(7, B), {2}] € B (»). Moreover, since there is no agreement that

constitutes an objection to [(B, B), {2}], the latter is in 9 (-»). Hence,
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KB, R), i2}] » [(B, L), {I}} implies that KB, L), ii}} e B (-»). Given

that the set of agreements that are objections to [(T, L), {1, 2}] is {[{T,

R), {2}}, KB, L), {I}}) Q B*(»), we have [(T, L), <1, 2}] € &*(»).

Next, observe that [(7, B), {2}] >->- [(T, L), {1, 2H and [(B, L), {[}]

>->- [(7, L), {1, 2}]. However, there is no agreement that threatens either

[(T, B), i2}} or KB, L), <1>]. Hence, {[(T, B), {2}], KB, L), {1}]} £

£ (»-), which implies that [(7, L), <1, 2}] € S (>->) since the set of

agreements that threaten it is {[(7, B), {2}], KB, L), {1}]}.

The last example also shows that a CCTE need not be a Nash

equilibrium. This may be expected of a UCPE as well. However, we have the

following result.

PROPOSITION 3: Generically, a UCPE is also a Nash equilibrium.

Proof: Suppose m is a UCPE and is not a Nash equilibrium. Then there

exists i e N such that Km', m ), <i}] >->->- [m, N] and, therefore, Km',
i - i i

m ), ii}} y> [m, N}. By definition of UCPE, [m, Wl e ? (»). Hence,
-i

*

Km', m ), {i}\ e S (>->-) and, therefore, there must exist H € if and an
i -i

#

agreement [m" , {{i} u H}] e '§ (>->-) such that [m" , {{i} u H}\ » Km', m ),
i -i

ii)]. We shall consider two cases:

I I

Case (i): There exists / e H such that u (m) > u (m" , m ) By
j j HU(i) -<HU<i>>

the lateral induction requirement, i.e. condition (iii) of the definition

of a threat, we must have X[m" , m ; Huii}] - X[m" , m ; ii}}, i.e.
HU(i> j HU<i> j

u (m) > u (m" , m ). Recall that u (m" , m ) = u (m").
i i HUCi) -<HU(i» i HU(i> -{HU(i)> i

We have a contradiction with the requirement that [m", {{i} u H}} >> Km',
i

m ), ii}} >> [m, N} must imply uim") > u(m', m ) > u(m).

Case (ii):

i ii-i i

There exists no j e H such that u (m)
j

> u im"
j HU(i)

m )

-<HVJ(i>)

21



By the genericity assumption, u (m) < u (m" , m ) for all j e H.J 6 J
J J HU(i> -<HU{i>)

[m", ffi; u Hj] >-> Km', m J), <i>] >-> [m, N] implies that u (m"
i -i i HU(i)

m ) = u (m") > u (m). Given that for all j e H , u (m"
-<HU<i>) i i j HUCi)

*

m ) = u (m") > u (m), we have [m", ffii u Hi] € ^ (»-) such that
-<HVJ<i>> j j

[m", {{1} u Hj] »->- [m, iV]. This implies that [m", {{1} u H>] >-> [m, iV]

*

and is in contradiction with the assumption that [m, iV] e ^ (»-).

The weaker notion W-UCPE does not, however, have the Nash equilibrium

property. This can be seen from the following proposition. This makes

the W-UCPE less desirable as a characterization of stability in a

non-cooperative context.

PROPOSITION 4: There is no logical relationship between W-UCPE and Nash

equilibrium.

Proof: From example 2, we know that a Nash equilibrium is not necessarily

W-UCPE. To see that a W-UCPE is not necessarily a Nash equilibrium,

consider the following example.

Example 5:

[Insert Figure 5 here]

Consider the game above. Player 1 chooses from {T, B}, 2 chooses from

<L, R} and 3 chooses from U, a>. We claim that [{T, L, I), {1, 2, 3>] e

'U {») whereas (T, L, I) is not a Nash equilibrium. We need the following

lemmata.

LEMMA 1: {[(B, R, I), {1, 2)], [(B, L, a), {2, 3}], [(T, L, I), {1, 3}]} £
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Proof of Lemma h We shall show that the relation » induces a cycle in the

set of agreements {[{B, B, 1), {1, 2}], [(B, L, a), {2, 3}], [(7, L, £),

U, 3}]}. The argument proceeds in several steps.

(I) We claim that [(B, L, a), {2, 3}] » [(B, R, I), {I, 2)].

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(L, a), I; {2, 3}] = {(B, L, I), (B, L, a), fB, B,

I), (B, R, a)} = X[(L, a), £; {2}}. Therefore, [(B, L, a), {2, 3}} > [(B,

B, £), {1, 2)].

(II) Next, we claim that [(7, L, £), {1, 3}] >> [(B, L, a), {2, 3>].

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(T, I), B; {1, 3}] = {(T, L, I), (B, L, £), (T, L,

a), (B, L, a)} = X[(7, £), B; {3}]. Therefore, [(7, L, I), U, 3}] >- [(B,

L, n), {2, 3}).

(III) Finally, we claim that [(B, B, £), {1, 2}] >-> [(7, L, £), (1,

3H. Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(B, R), L; {1, 2}] = {(7, L, £), (B, L, £), (7, B,

£), (B, B, £)} = X[(B, B), L; U». Therefore, [(B, B, £), <1, 2}] >- [(7,

L, I), <1, 3}].

The steps (I)-(III) have generated a cycle of threatened agreements

since [(B, B, £), {1, 2}] >-> [(7, L, £), {1, 3}] » [(B, L, a), {2, 3}] »-

[(B, B, £), U, 2>] >^ ...

*

We claim that [(B, B, £), {1, 2>] € li (>->-). Suppose otherwise. There

are two cases to be examined.

Suppose [(B, B, £), {1, 2}] € B (>->-), in which case it is threatened

*

by an agreement in § (>->). However, there is no agreement other than [(B,

L, a), {2, 3}} that threatens [(B, B, £), {1, 2}]. Hence, [(B, L, n.), {2,

3}} € £ (»). Then [(T, L, 1), (I, 3}} e B*(y>) since [(7, L, I), (I, 3}}
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*» [(B, L, a), (2, 3}}. If KT, L, I), fl, 3}] e £ (»), we must have [(B,

*

R, I), U, 2}] e S" (>->-) since there is no agreement other than [(B, R, I),

U, 2}] that threatens KT , L, V, fl, 3}]. Hence, we have a

contradiction.

*

Suppose that [(B, R, £), U, 2}] e £ (»), in which case KB, L, a),

{2, 3}] € 2 (>->-), since KB, L, a), (2, 3}} » [(B, R, £), {1, 2}]. Thus,

[(T, L, £J>, (1, 3}] 6 £ (») since [(T, L, £;, fl, 3>] is the only

agreement that threatens KB, L, a), {2, 3}}. If KT, L, I), fl, 3}} e

£ (>->), we must have [(B, R, £), {1, 2}} e S (>->-) since [(B, R, £), {1, 2}]

>->- KT , L, I), fl, 3}]. Hence, we have a contradiction.

An analogous argument can be given to show that [(7, L, t), {1, 3}] €

1/ (>->-) and [(B, L, a), {2, 3}] € U {»). u

LEMMA 2: [(7, R, £), {2}] € V*(»).

Proof of Lemma 2j_ First, we claim that [(B, R, £), {1, 2}] »- [(7, R, £),

{2}]. Conditions (i) and (ii) for a threat are met. To check for

condition (iii), verify that Xl(B, R), 7; {1, 2}] = {(7, L, £), (B, L, £),

(7, R, £), (B, R, £), (7, R, a), (B, R, a)} = X[(B, R), 7; {2}).

Therefore, [(B, R, £), {1, 2)] > [(7, R, £), {2)].

Observe that neither [(B, L, a), {1, 2, 3}] nor [(B, L, a), {2, 3}]

threatens [(7, R, £), {2}]. In each case, though conditions (i) and (ii)

for a threat are met, condition (iii) is not satisfied. The unique

agreement that threatens 1(7, R, £), {2)\ is [(B, R, £), {1, 2}]. [(B, R,

£), {1, 2H € 1/ (») (from Lemma 1) implies that [(7, R, £), {211 €

l/W).

To check that [(7, L, £), {1, 2, 3}] e U (»), observe that the only

agreements that threaten it are [(B, R, £), {1, 2)\ and [(7, R, £), {2}].
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By Lemma 1 and Lemma 2, {[(B, R, I), U, 2>], [IT, R, I), {2}]} £

U {>>). *

Since existence is always an issue with coalitional solution concepts,

it is useful to know of a sufficient condition for a Nash containment

property. Thus, we would have a concept that is weaker than UCPE and is

also a Nash equilibrium refinement. Define an intermediate concept that is

stronger than W-UCPE and weaker than UCPE as follows: m is a quasi-weak

Universal Coalition-proof Equilibrium (Q-UCPE) if m is a W-UCPE and

satisfies:

[3[m\ U>] € d such that [m\ ii}] >> [m, N}] => I3[m", ij}} e d such that

[m", {J}] y> [m, N] and [m", {j}] e S (»)].

The proof of Proposition 3 yields the following conclusion as well.

COROLLARY TO PROPOSITION 3: Generically, a Q-UCPE is also a Nash

equilibrium.

7. CONCLUDING REMARKS

(i) A subgame-perfect version of UCPE can also be given. For a

multi-stage game T, let y be a proper subgame of T. An agreement is

perfectly good if it is good in every subgame. An agreement is perfectly

bad if it is bad in some subgame. All other agreements are perfectly ugly.

Define a minimal perfect (^)-semi-stable partition as in the earlier

sections. All the propositions discussed above can be transported to this

framework and by replacing CPE, CCTE and Nash equilibrium with the
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corresponding concepts requiring subgame-perfection.

(ii) We also apply the notion of lateral induction in a cooperative

context in Chakravorti (1990) in a new definition of a Bargaining Set.

(iii) An interesting comparison is with the consistent Bargaining Set

of Dutta et al (1989). Due to a fundamental restriction in the definition

of the Bargaining Set (see Chakravorti (1990)), they avoid cycles of the

form given in the Appendix of this paper. We have shown that despite the

presence of such cycles in the ordering of agreements, an appealing

characterization of stable agreements can be given. In particular, we have

criteria that provide a justification for focusing on a subset of Nash

equilibrium despite the fact that in environments with universal coalition

formation possibilities, Nash equilibrium is not a necessary condition for

(von Neumann and Morgenstern) stability of an outcome.
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APPENDIX

NON-EXISTENCE OE A UNIQUE (»)-(SEMI)-STABLE PARTITION

PROPOSITION A.l : 7a general, 4 does not admit a {»)-stable partition.

Proof: The proof is by way of an example. We shall present a game for

which Vl{») * 0.

Example 6: Consider the following game. Player 1 chooses from {T, B}, 2

chooses from {L, R} and 3 chooses from {I, n,}.

[Insert Eigure 6 here]

We shall show that the relation » induces a cycle in the set of

agreements i[(B, R, I), {1, 2}], [(B, L, a), {2, 3>], [(T, L, I), {1, 3>]>.

The argument proceeds in several steps.

(I) We claim that [(B, L, a), {2, 3}] » [(B, R, I), {1, 2)].

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(L, a), £; {2, 3}] = {{B, L, I), [B, L, a), (B, R,

I), (B, R, a)} = X[(L, a), l; {2}}. Therefore, KB, L, a), {2, 3}] >- [[B,

R, I), {1, 2}}.

(II) We claim that [(7, L, £), {1, 3>] >->- [(B, L, a), <2, 3}].

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(T, I), B; {1, 3}] = {(T, L, I), (B, L, t), (T, L,

a), IB, L, a)} = X[(T, I), B; {3}). Therefore, 1(7, L, £), {1, 3}] > [(B,

L, a), {2, 3}].

(III) We claim that [(B, R, I), {1, 2}] >y [(7, L, 1), {1, 3}].

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(B, R), L; {1, 2)\ = {(7, L, I), (B, L, I), (7, R,

I), IB, R, I)) = X[(B, R), L; (1». Therefore, [(B, /?, I), {1, 2}j >- [(7,

L, £), {1, 3H.
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The steps (I)

—

(III) have generated a cycle of threatened agreements

since [(£, R, I), <1, 2}] »- [(T, L, I), U, 3}] »- KB, L, a), {2, 31] »
KB, B, £), {1, 2}] x>- ...

We claim that KB, R, I), {1, 2}] e li(>-^). Suppose otherwise. There

are two cases to be examined.

Suppose [(B, R, I), {I, 2)] € "B{»), in which case it is threatened by

an agreement in §(>->-). However, there is no agreement other than [(B, L,

n), {2, 3}] that threatens KB, R, I), {I, 2}]. Hence, [(B, L, a), {2, 3}}

e m»). Then [(T , L, 1), (I, 3}] e S(») since [(T, L, I), (1, 3}) y>

KB, L, a), {2, 3}}. If [(T, L, I), (I, 3}] e ©(>->-), we must have [(B, R,

1), {I, 2)\ e §"(>->-) since there is no agreement other than KB, R, I), {1,

2)\ that threatens [(T, L, I), {I, 3}}. Hence, we have a contradiction.

Suppose that KB, R, I), {1, 2)] € &{»), in which case [(B, L, a),

{2, 3}) e B()-)-), since KB, L, a), {2, 3}} >> [(B, R, I), {1, 2)]. Thus,

[(T , L, 1), {I, 3}] € §"(>->-) since [(T, L, I), {\, 3}} is the only agreement

that threatens [(B, L, a), {2, 3}}. If [(T, L, I), (I, 3}} € '$(>->), we

must have KB, R, I), {1, 2}] e £(>->-) since KB, R, I), {1, 2}] >-> [(T, L,

£), {I, 3}]. Hence, we have a contradiction. .

PROPOSITION A. 2: In general, A does not admit a unique (»)-semi-stable

partition.

Proof: The proof is by way of an example. We shall present a game such

that a cycle is generated as in the previous example. Each agreement in

the cycle can be defined as both good and bad relative to corresponding

re-definitions of the agreements in the cycle that threaten it.

Example 7: Consider the following game. Player 1 chooses from {T, B}, 2

4-l



chooses from {L, R}, 3 chooses from {I, n.) and 4 chooses from {U, D}.

[Insert Figure 7 here]

We shall show that the relation » induces a cycle of the form

discussed above in the set {[(B, R, I, U), {I, 2}), KB, L, a, U), {2, 3}],

[(B, L, a, D), {3, 4>], [(7\ L, I, U), U, 3, 4}]. The argument proceeds

in several steps.

(I) We claim that [(B, L, a, U), {2, 3}} » KB, B, I, U), {1, 2>1.

Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(L, a), £; {2, 3}] = {(B, L, £, U), (B, L, a, {/), CB,

B, £, [/;, CB, R, a, 10} = X[(L, a), £); {2}). Therefore, [(B, L, n, U),

{2, 3)) > KB, R, I, U), {1, 2}].

(II) We claim that KB, L, a, D), {3, 4}] >->- KB, L, a, U), \2, 3\\,

Conditions (i) and (ii) for a threat met. To check for condition (iii),

verify that X[(a, D), U; {3, 4}] = «(B, L, t, U), (B, L, a, U), (B, L, I,

D), (B, L, a, D)> = XKa, D), U; {3}). Therefore, KB, L, a, D), {3, 4}]

>- KB, L, a, U), {2, 3}}.

(III) We claim that [(T, L, I, U), {1, 3, 4}] >->- [(B, L, a, D), i3,

4}], Conditions (i) and (ii) for a threat are met. To check for condition

(iii), verify that X[(T, I, U), B; {1, 3, 4}] = {(T, L, i, U), (B, L, I,

U), (T, L, a, U), (B, L, a, U), (T, L, a, D), (B, L, % D), (T, L, I, D),

(B, L, t, D)) = XKT, I, U), B; {3, 4}). Therefore, KT, L, t, U), {1, 3,

4}} > KB, L, n, D), {3, 4}].

(IV) We claim that [(B, R, t, U), {1, 2}] >->- [(T, L, £, U), U, 3,

4}], Conditions (i) and (ii) for a threat are met. To check for

condition (iii), verify that X[(B, R), L; <1, 2)\ = {(T, L, £, t/J, (B, L,

£, £/), (T, R, I, U), (B, B, I, U), (B, L, £, D), (B, B, £, D)} = X[(B, B),

L; {1». Therefore, [(B, B, £, (/), {1, 2}] > KT, L, t, U), U, 3, 4}].

A-3



The steps (I)— (IV) have generated a cycle of threatened agreements

since ((B, R, I, U), {1, 2}) » ((T, L, I, U), U, 3, 4}) >->- ((B, L, a, D),

{3, 4}) >-> ((B, L, a, t/), {2, 3}) » ((B, B, £, I/), {1, 2}) »- ...

Also, check that for each one of the agreements in this cycle, there

is only one agreement that threatens it.

The cycle generated above has the following structure:

[Insert Figure 8 here]

{A, B, C, D} is such that A >->- B »- C >->- D >->- A >->- B is the only

agreement that threatens A. C is the only agreement that threatens B. D

is the only agreement that threatens C and A is the only agreement that

threatens D.

Suppose that A € §{»). Then D e %{»), C 6 '§{») and B €
LB{»).

Alternatively, suppose A e £(»-). Then D e £/(>->-), C e £(>->-) and B e §{»).

Both the partitions of {A, B, C, D} are admissible.
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R R

B

1,1,-5 -1, -5,

-5, -5, 0, 0, 10

T

B

-3, -1, 5 -5, -5,

2, -5, 20 -2, -2,

Figure 1

P-l



R R

T

B

1, 1, -5 -1, -5,

-5, -5, 0, 0, 10

7

B

-1, -1, 5 -5, -5,

-5, -5, -2, -2,

R

T

B

-3, -1, 5 -5, -5,

2, -5, 4 -2, -2,

a

Figure 2.

F-x



R R

T

B

1,1,-5

-5, -5,

-1, -5,

0, 0, 10

0, 0,

0, 0,

T

B

-3, -1, 5

2, -5, 20

-5, -5,

•2, -2,

0,0,0

0, 0,

a

Figure 3.
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R

T

D

0, 5 0, 6

6, 1, 1

Figure 4.

F-1



R R

B

10, 10, 10 -3, 10.5, 4

9, 9, 6 11, 11, 5 B

9, 8, 3 -4, -5,

8, 12, 7 -2, -2, 11

Figure 5.
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L R

B

10, 10, 10 -3, 9, 4

9, 9, 6 11, 11, 5 B

R

9, 8, 3 -4, -5,

8, 12, 7 -2, -2, 11

a

Figure 6.
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u

R R

B

10, 10, 10, 10 -3, 9, 4, -3

9, 9, 6, 9 11 , 11 , 5, 11

T

B

9, 8, 3, 9 -4, -5, 0, -4

8, 12, 7, 8 -2, -2, 11, -2

D

R R

B

12, 13, -1, 9 9, 13, -1, 9

9, 12, -1, 9 10, 13, -1, 9

T

B

12, 10, -1,9

9, 10 , 9, 9.5

9, 10, -1, 9

9, 10, -1, 9

a

Figure 7.
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Figure 8.
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